Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes

نویسندگان

  • Huitong Qiu
  • Sheng Xu
  • Fang Han
  • Han Liu
  • Brian Caffo
چکیده

Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a quantile-based robust estimator for the transition matrix of the VAR process. We show that the proposed estimator achieves parametric rates of convergence in high dimensions. This is the first work in analyzing heavy-tailed high dimensional VAR processes. As an application of the proposed framework, we investigate Granger causality in the elliptical VAR process, and show that the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The empirical performance of the proposed methodology is demonstrated by both synthetic and real data. We show that the proposed estimator is robust to heavy tails, and exhibit superior performance in stock price prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the extremal behavior of a Pareto process: an alternative for ARMAX modeling

In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh–...

متن کامل

Finite Time Identification in Unstable Linear Systems

Identification of the parameters of stable linear dynamical systems is a well-studied problem in the literature, both in the low and high-dimensional settings. However, there are hardly any results for the unstable case, especially regarding finite time bounds. For this setting, classical results on least-squares estimation of the dynamics parameters are not applicable and therefore new concept...

متن کامل

Missing Data in Sparse Transition Matrix Estimation for Sub-Gaussian Vector Autoregressive Processes

High-dimensional time series data exist in numerous areas such as finance, genomics, healthcare, and neuroscience. An unavoidable aspect of all such datasets is missing data, and dealing with this issue has been an important focus in statistics, control, and machine learning. In this work, we consider a high-dimensional estimation problem where a dynamical system, governed by a stable vector au...

متن کامل

Transition Matrix Estimation in High Dimensional Time Series

In this paper, we propose a new method in estimating transition matrices of high dimensional vector autoregressive (VAR) models. Here the data are assumed to come from a stationary Gaussian VAR time series. By formulating the problem as a linear program, we provide a new approach to conduct inference on such models. In theory, under a doubly asymptotic framework in which both the sample size T ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015